RoryHidayat">http://www.dreambingo.co.uk/RoryHidayat">

Rory Hidayat

Rory Hidayat
yang punya blog ni...yang Nulis...

Pengikut

Rabu, 18 April 2012

Resistivity Logging


Resistivity Logging

Adalah metoda untuk mengukur sifat batuan dan fluida pori (baca: minyak, gas dan air) disepanjang lubang bor dengan mengukur sifat tahanan kelistrikannya.

Besaran resistivitas batuan dideskripsikan dengan Ohm Meter, dan biasanya dibuat dalam skala logarithmic dengan nilai antara 0.2 sampai dengan 2000 Ohm Meter.

Metoda resistivity logging ini dilakukan karena pada hakekatnya batuan, fluida dan hidrokarbon di dalam bumi memiliki nilai resistivitas tertentu. Berikut contohnya:
Adapted from Colorado School of Mines 

Pada tabel di atas terlihat adanya ‘irisan’ nilai resistivitas antara jenis batuan sedimen. Hal ini mengakibatkan interpretasi batuan berdasarkan nilai log resistivitas merupakan pekerjaan yang sangat sulit.

Akan tetapi, nilai resistivitas air garam dapat dibedakan dengan baik dari minyak dan gas. Karena air garam memiliki nilai resistivitas yang sangat rendah, sedangkan hidrokarbon (minyak-gas) memiliki nilai resistivitas yang sangat tinggi. Log resistivitas banyak sekali membantu pekerjaan evaluasi formasi khususnya untuk menganalisa apakah suatu reservoir mengandung air garam (wet) atau mengandung hidrokarbon, sehingga log ini digunakan untuk menganalisis Hidrocarbon-Water Contact.

Gambar dibawah ini menunjukkan contoh interpretasi HC-Water Contact dari resistivity log.
Courtesy Dr Elena Pasternak

Didalam pengukuran resistivity log, biasanya terdapat tiga jenis ‘penetrasi’ resistivity, yakni shallow (borehole), medium (invaded zone) dan deep (virgin) penetration. Perbedaan kedalaman penetrasi ini dimaksudkan untuk menghindari salah tafsir pada pembacaan log resistivity karena mud invasion (efek lumpur pengeboran) dan bahkan dapat mempelajari sifat mobilitas minyak.

Sebagaimana yang kita ketahui untuk mengantisipasi pressure (e.g. pore pressure), saat pengeboran biasanya dipompa oil based mud atau water based mud. Sebagai contoh, jika kita menggunakan water based mud (resistivity rendah) sebagai lumpur pemboran, kemudian lumpur tersebut meng-invasi reservoir yang mengandung minyak, maka kita akan mendapatkan profil deep penetration resistivity lebih tinggi daripada shallow-medium penetration resistivity.

Jika medium penetration dan deep penetration mirip (tidak ada efek invasi), maka situasi ini mengindikasikan minyak didalam reservoir tersebut sangat susah untuk mobile (hal ini kurang bagus dalam production). Gambar di bawah menunjukkan perbedaan zona borehole (lumpur), invaded dan virgin zone

Courtesy ATEMIS, Technologies Sarl, 1998-2007.

Gambar di bawah ini menunjukkan respon resistivity log untuk shallow, medium dan deep penetration. Lihat respon pada interval reservoir-batupasir (low gamma ray, low SP), besaran nilai resistivitas untuk ketiga jenis penetrasi ini menunjukkan nilai yang tinggi yakni > 100 Ohm-meter yang menunjukkan bahwa reservoir tersebut mengandung hidrokarbon. Selanjutnya, terlihat bahwa shallow resistivity lebih tinggi dari medium dan medium lebih tinggi dari deep penetration. Apakah anda bisa menduga jenis mud yang digunakan? water based atau oil based mud? 

Courtesy Geomore

Resistivity log memiliki kegunaan lain yakni untuk mendeterminasi tingkat saturasi air (Water Saturation). Semakin tinggi saturasi air maka resistivity akan semakin rendah. Prediksi Water Saturation dari Resistivity log dapat dilakukan dengan berbagai algoritma diantaranya Persamaan Archie berikut:

Courtesy www.kgs.ku.edu

SURVEY GEOLISTRIK (GEOELECTRIC)

Metode (IP, SP and Resistivity)
Geolistrik adalah metode geofisika aktif yang menggunakan arus listrik untuk menyelidiki material di bawah permukaan bumi. Metode ini dikenal dengan geolistrik, atau geoelectric. Istilah “electrical resistivity”, “DC resistivity”, dan “VES (vertical Electric Sounding)” juga mengacu kepada metode geofisika aktif ini. Revolusi dan evolusi dalam teknologi instrumentasi dan teknik prosesing komputer telah menyumbangkan andil yang sangat besar dalam perkembangan dari survey geolistrik ini. Perkembangan terakhir dari "multi-channel electrical resistivity system" and "computer-processing modeling" telah menigkatkan fleksibilitas, kecepatan, dan efesiensi pekerjaan di lapangan pada survey geolistrik konvensional. Selain itu, perkembangan terakhir metode ini juga dapat memfasilitasi aplikasi geofisika ini untuk menyelidiki lingkungan di bawah permukaan bumi yang lebih kompleks. Sehingga dapat dikatakan bahwa survey geolistrik dapat membantu dalam memotong waktu dan biaya yang diperlukan dalam eksplorasi mineral.

Teknik pengukuran resistivity lapisan bumi dilakukan dengan mengalirkan arus DC ke dalam bumi dan mengukur voltase (beda tegangan) yang ditimbulkan di dalam bumi. Arus Listrik dan Tegangan disusun dalam sebuah susunan garis linier. Beberapa susunan garis linier yang umum dipakai adalah: dipole-dipole, pole-pole, schlumberger, dan wenner.

Survey Geolistrik dapat diaplikasikan pada:
1. Eksplorasi Air Bawah Tanah
2. Eksplorasi Batubara
3. Eksplorasi Emas
4. Eksplorasi Batubesi (Iron Ore)
5. Eksplorasi Mangan
6. Eksplorasi Chromites

Resistivity


Resistivity adalah metoda untuk mengukur sifat batuan dan fluida pori (baca: minyak, gas dan air) disepanjang lubang bor dengan mengukur sifat tahanan kelistrikannya.Besaran resistivitas batuan dideskripsikan dengan Ohm Meter, dan biasanya dibuat dalam skala logarithmic dengan nilai antara 0.2 sampai dengan 2000 Ohm Meter.
Metoda resistivity logging ini dilakukan karena pada hakekatnya batuan, fluida dan hidrokarbon di dalam bumi memiliki nilai resistivitas tertentu. Berikut contohnya:
TABEL V.1
NILAI RESISTIVITY
Pada tabel di atas terlihat adanya ‘irisan’ nilai resistivitas antara jenis batuan sedimen. Hal ini mengakibatkan interpretasi batuan berdasarkan nilai log resistivitas merupakan pekerjaan yang sangat sulit.
Akan tetapi, nilai resistivitas air garam dapat dibedakan dengan baik dari minyak dan gas. Karena air garam memiliki nilai resistivitas yang sangat rendah, sedangkan hidrokarbon (minyak-gas) memiliki nilai resistivitas yang sangat tinggi. Log resistivitas banyak sekali membantu pekerjaan evaluasi formasi khususnya untuk menganalisa apakah suatu reservoir mengandung air garam (wet) atau mengandung hidrokarbon, sehingga log ini digunakan untuk menganalisis Hidrocarbon-Water Contact.

Gambar dibawah ini menunjukkan contoh interpretasi HC-Water Contact dari resistivity log:
GAMBAR V.2
RESISTIVITY LOG
Didalam pengukuran resistivity log, biasanya terdapat tiga jenis ‘penetrasi’ resistivity, yakni shallow (borehole), medium (invaded zone) dan deep (virgin) penetration. Perbedaan kedalaman penetrasi ini dimaksudkan untuk menghindari salah tafsir pada pembacaan log resistivity karena mud invasion (efek lumpur pengeboran) dan bahkan dapat mempelajari sifat mobilitas minyak. Sebagaimana yang kita ketahui untuk mengantisipasi pressure (e.g. pore pressure), saat pengeboran biasanya dipompa oil based mud atau water based mud. Sebagai contoh, jika kita menggunakan water based mud (resistivity rendah) sebagai lumpur pemboran, kemudian lumpur tersebut meng-invasi reservoir yang mengandung minyak, maka kita akan mendapatkan profil deep penetration resistivity lebih tinggi daripada shallow-medium penetration resistivity Jika medium penetration dan deep penetration mirip (tidak ada efek invasi), maka situasi ini mengindikasikan minyak didalam reservoir tersebut sangat susah untuk mobile (hal ini kurang bagus dalam production). Gambar di bawah menunjukkan perbedaan zona borehole (lumpur), invaded dan virgin zone
GAMBAR V.3
RESPON RESISTIVITY
Gambar di bawah ini menunjukkan respon resistivity log untuk shallow, medium dan deep penetration. Lihat respon pada interval reservoir-batupasir (low gamma ray, low SP), besaran nilai resistivitas untuk ketiga jenis penetras 
ini menunjukkan nilai yang tinggi yakni > 100 Ohm-meter yang menunjukkan bahwa reservoir tersebut mengandung hidrokarbon. Selanjutnya, terlihat bahwa shallow resistivity lebih tinggi dari medium dan medium lebih tinggi dari deep penetration.
GAMBAR V.4
RESISTIVITY
Resistivity log memiliki kegunaan lain yakni untuk mendeterminasi tingkat saturasi air (Water Saturation). Semakin tinggi saturasi air maka resistivity akan semakin rendah.

Selasa, 17 April 2012

Eksplorasi Minyak Bumi


Eksplorasi Minyak Bumi

Eksplorasi, disebut juga penjelajahan atau pencarian, adalah tindakan mencari atau melakukan perjalanan dengan tujuan menemukan sesuatu. Dalam dunia perminyakan, eksplorasi atau pencarian minyak bumi merupakan suatu kajian panjang yang melibatkan beberapa bidang kajian kebumian dan ilmu eksak. Untuk kajian dasar, riset dilakukan oleh para geologis, yaitu orang-orang yang menguasai ilmu kebumian. Mereka adalah orang yang bertanggung jawab atas pencarianhidrokarbon tersebut.
Secara ilmu geologi, untuk menentukan suatu daerah mempunyai potensi akan minyak bumi, maka ada beberapa kondisi yang harus ada di daerah tersebut dalam eksplorasi minyak bumi hal ini disebut kajian geologi. Jika salah satu saja tidak ada maka daerah tersebut tidak potensial atau bahkan tidak mengandung hidrokarbon. Kondisi itu adalah:
  1. Batuan Sumber (Source Rock), yaitu batuan yang menjadi bahan baku pembentukan hidrokarbon. biasanya yang berperan sebagai batuan sumber ini adalah serpih (Shale). batuan ini kaya akan kandungan unsur atom karbon (C) yang didapat dari cangkang – cangkang fosil yang terendapkan di batuan itu. Karbon inilah yang akan menjadi unsur utama dalam rantai penyusun ikatan kimia hidrokarbon
  2. Tekanan dan Temperatur, untuk mengubah fosil tersebut menjadihidrokarbon, tekanan dan temperatur yang tinggi di perlukan. Tekanan dan temperatur ini akan mengubah ikatan kimia karbon yang ada dibatuan menjadi rantai hidrokarbon.
  3. Migrasi, Hirdokarbon yang telah terbentuk dari proses di atas harus dapat berpindah ke tempat dimana hidrokarbon memiliki nilai ekonomis untuk diproduksi. Di batuan sumbernya sendiri dapat dikatakan tidak memungkinkan untuk di ekploitasi karena hidrokarbon di sana tidak terakumulasi dan tidak dapat mengalir. Sehingga tahapan ini sangat penting untuk menentukan kemungkinan eksploitasi hidrokarbon tersebut.
  4. Reservoir, adalah batuan yang merupakan wadah bagi hidrokarbon untuk berkumpul dari proses migrasinya. Reservoar ini biasanya adalah batupasir dan batuan karbonat, karena kedua jenis batu ini memiliki pori yang cukup besar untuk tersimpannya hidrokarbon. Reservoar sangat penting karena pada batuan inilah minyak bumi di produksi.
  5. Caps Rock, Minyak dan atau gas terdapat di dalam reservoir, untuk dapat menahan dan melindungi fluida tersebut, maka lapisan reservoir ini harus mempunyai penutup di bagian luar lapisannya. Sebagai penutup lapisan reservoir biasanva merupakan lapisan batuan yang rnempunyai sifat kekedapan (impermeabel), yaitu sifat yang tidak dapat meloloskan fluida yarg dibatasinya. Jadi lapisan penutup didefinisikan sebagai lapisan yang berada  dibagian atas dan tepi reservoir yang dapat dan melindungi fluida yang berada di dalam lapisan di bawahnya.
  6. Perangkap Reservoir (Reservoir Trap), Merupakan unsur pembentuk reservoir sedemikian rupa sehingga lapisan beserta penutupnya merupakan bentuk yang konkap ke bawah, hal ini akan mengakumulasikan minyak dalam reservoir. Jika perangkap ini tidak ada maka hidrokarbon dapat mengalir ketempat lain yang berarti ke ekonomisannya akan berkurang atau tidak ekonomis sama sekali.

Kajian geologi merupakan kajian regional, jika secara regional tidak memungkinkan untuk mendapat hidrokarbon maka tidak ada gunanya untuk diteruskan. Jika semua kriteria di atas terpenuhi maka daerah tersebut kemungkinan mempunyai potensiminyak bumi atau pun gas bumi. Sedangkan untuk menentukan ekonomis atau tidaknya diperlukan kajian yang lebih lanjut yang berkaitan dengan sifat fisik batuan. Maka penelitian dilanjutkan pada langkah berikutnya.
Setelah kajian secara regional dengan menggunakan metoda geologi dilakukan, dan hasilnya mengindikasikan potensi hidrokarbon, maka tahap selanjutnya adalah tahapan kajian geofisika. Pada tahapan ini metoda – metoda khusus digunakan untuk mendapatkan data yang lebih akurat guna memastikan keberadaan hidrokarbon dan kemungkinannya untuk dapat di ekploitasi. Data-data yang dihasilkan dari pengukuran pengukuran merupakan cerminan kondisi dan sifat-sifat batuan di dalam bumi. Ini penting sekali untuk mengetahui apakan batuan tersebut memiliki sifat – sifat sebagai batuan sumber, reservoir, dan batuan perangkap atau hanya batuan yang tidak penting dalam artian hidrokarbon. Metoda-metoda ini menggunakan prinsip-prinsip fisika yang digunakan sebagai aplikasi engineering.Metoda tersebut adalah:
  1. Survey Geologi Permukaan, pemetaan geologi pada permukaan secara detail dapat dilakukan jika memang terdapat singkapan. Pemetaan dilakukan pada rintisan dan juga di sepanjang sungai.
  2. Eksplorasi seismik, Ini adalah ekplorasi yang dilakukan sebelum pengeboran. kajiannya meliputi daerah yang luas. dari hasil kajian ini akan didapat gambaran lapisan batuan di dalam bumi. Untuk survey detail, metode seismik merupakan metode yang paling teliti dan dewasa ini telah melampaui kemampuan geologi permukaan. Metode yang digunakan adalah khusus metode refleksi. Walaupun pemetaan geologi detail terhadap tutupan telah dilakukan, pengecekan seismik selalu harus dilaksanakan, untuk penentuan kedalam objektif pemboran serta batuan dasar dan juga lapisan yang akan menghasilkan minyak
  3. Data resistivity, prinsip dasarnya adalah bahwa setiap batuan berpori akan diisi oleh fluida. Fluida ini bisa berupa air, minyak atau gas. Membedakan kandungan fluida di dalam batuan salah satunya dengan menggunakan sifat resistan yang ada pada fluida. Fluida air memiliki nilai resistan yang rendah dibandingkan dengan minyak, demikian pula nilai resistan minyak lebih rendah dari pada gas. dari data log kita hanya bisa membedakan resistan rendah dan resistan tinggi, bukan jenis fluida karena nilai resitan fluida berbeda beda dari tiap daerah. sebagai dasar analisa fluida perlu kita ambil sampel fluida di dalam batuan daerah tersebut sebagai acuan kita dalam interpretasi jenis fluida dari data resistiviti yang kita miliki
  4. Data porositas
  5. Data berat jenis, data ini diambil dengan menggunakan alat logging dengan bantuan bahan radioaktif yang memancarkan sinar gamma. Pantulan dari sinar ini akan menggambarkan berat jenis batuan. Dapat kita bandingkan bila pori batuan berisi air dengan batuan berisihidrokarbon akan mempunyai berat jenis yang berbeda.

Sebagai tambahan semua propek yang telah dipilih serta dinilai dalam suatu sistem penilaian, kemudian dipih untuk dilakukan pemboran eksplorasi terhadapnya. Maka semua prospek ini haruslah diberi prognosis. Yang dimaksud Prognosis adalah rencana pemboran secara terperinci serta ramalan-ramalan mengenai apa yang akan ditemui waktu pemboran dan pada kedalaman berapa. Prognosis meliputi ;
  1. Lokasi Yang Tepat, lokasi ini biasanya harus diberikan dalam koordinat. Untuk mencegah terjadinya kesalahan dalam lokasi titik terhadap tutupan struktur, sebaliknya semua koordinat lokasi tersebut penentuannya dilakukan dari pengukuran seismik, terutama jika tutupan ditentukan oleh metode seismik. Jika hal ini terjadi di laut misalnya, maka pengukuran harus dilakukan dari pelampung (buoy) yang sengaja ditinggalkan di laut pada pengukuran seismik, juga dari titik pengukuran radar di darat. Setidak-tidaknya pengukuran lokasi itu harus teliti sekali sebab kemelesetan beberapa ratus meter dapat menyebabkan objektif tidak diketemukan.
  2. Kedalaman Akhir, kedalaman Akhir pemboran eksplorasi biasanya merupakan batuan dasar cekungan sampai mana pemboran itu pada umumnya direncanakan. penntuan kedalaman akhir ini sangat penting karena dengan demikian kita dapat memperkirakan berapa lama pemboran itu akan berlangsung dan dalam hal ini juga untuk berapa lama alat bor itu kita sewa. Penentuan kedalaman akhir ini diasarkan atas data seismik, setelah dilakukan korelasi dengan semua sumur yang ada dan juga dari kecepatan rambat reflektor yang ditentukan sebagai batuan dasar.
  3. Latar Belakang Geologi, alasan untuk pemboran didsarkan atas latar belakang geologi. Maka harus disebutkan keadaan geologi daerah tersebut, alasan pemboran eksplorasi dilakukan di daerah tersebut, jenis tutupan prospek dan juga struktur yang diharapkan dari prospek tersebut.
  4. Objektif Atau Lapisan Reservoir Yang Diharapkan, ini biasanya sudah ditentukan dan stratigrafi regional dan juga diikat dengan refleksi yang didapat dari seismik. Objektif lapisan reservoir ini harus ditentukan pada tingginya kedalaman yang diharapkan akan dicapai oleh pemboran, dimana diperoleh dari perhitungan kecepatan rambat seismik.
  5. Kedalaman Puncak Formasi Yang Akan Ditembus, juga dalam prognosis ini harus kita tentukan formasi-formasi mana yang akan dilalui bor, maka kedalaman puncak (batas) formasi ini harus ditentukan dari data seismik.
  6. Jenis Survey Lubang Bor Yang Akan Dilaksanakan, pada setiap Pemboran eksplorasi selalu dilakukan survey lubang bor. Survey meliputi misalnya peng-Logan lumpur, Peng-Logan Cutting, Peng-Logan Listrik, Peng-Logan Radioaktif, dan sebagainya. Sebaiknya pada pemboran eksplorasi dilakukan survey yang lengkap , selain itu juga harus direncanakan apakah akan dilakukan pengambilan batu inti (coring) atau tidak.
Dalam pembuatan prognosis ini juga ahli geologi harus bekerja sama dengan bagian eksploitasi dan bagian pemboran. Dengan demikian diharapkan diperoleh hasil yang sangat baik dalam pengembangan suatu lapangan nantinya.

Senin, 16 April 2012

Migrasi Hidrokarbon


Migrasi didefinisikan sebagai pergerakan minyak dan gas di bawah permukaan. Migrasi primer merupakan sebutan untuk tahapan dari proses migrasi, berupa ekspulsi hidrokarbon dari source rock (batuan sumber) yang berbutir halus dan berpermeabelitas rendah ke carrier bed yang memiliki permeabelitas lebih tinggi. Akumulasi merupakan pengumpulan dari hidrokarbon yang telah bermigrasi dalam keadaan yang secara relatif diam dalam waktu yang lama. Trap merupakan istilah dimana migrasi terhenti dan akumulasi terjadi.
Jika minyakbumi berasal dari bahan organik dan tersebar dalam batuan sumber, kemungkinan bentuk fisik minyakbumi yang terbentuk adalah berupa tetes-tetes kecil. Karena itu untuk terjadinya  suatu akumulasi diperlukan pengkonsentrasian, antara lain keluarnya tetes-tetes tersebut dari reservoir dan kemudian bergerak ke perangkap. Koesoemadinata (1980) menyatakan ada beberapa faktor tertentu sebagai sumber tenaga untuk terjadinya migrasi minyakbumi baik primer maupun sekunder, yaitu kompaksi, tegangan permukaan, gravitasi pelampungan (buoyancy), tekanan hidrostatik, tekanan gas, sedimentasi, dan gradien hidrodinamik.
Migrasi Primer
Saat ini, ada tiga mekanisme migrasi primer yang membawa perhatian serius bagi kebanyakan ahli geokimia petroleum, yaitu difusi, ekspulsi fasa minyak, dan pelarutan dalam gas.
Difusi sebagai mekanisme aktif dalam migrasi hidrokarbon, terjadi secara terbatas pada batuan sumber yang tipis atau pada tepian unit batuan sumber yang tebal. Pengkonsentrasian diperlukan untuk memungkinkan terjadinya migrasi primer, dimana difusi dapat menyebabkan akumulasi hidrokarbon dalam ukuran yang cukup besar.
Ekspulsi hidrokarbon dalam kaitannya dengan migrasi primer terjadi dalam fasa hidrofobik. Ini terjadi pada umumnya sebagai hasil perekahan mikro selama pergerakan hidrokarbon. Ketika tekanan dalam batuan sudah melebihi kekuatannya menahan tekanan, perekahan mikro terjadi, terutama pada bidang lemah dari batuan tersebut, seperti bidang perlapisan. Sehingga batuan yang terlaminasi mungkin menghasilkan hidrokarbon dengan tingkat efisiensi yang lebih tinggi daripada batuan yang masif. Momper (1789) dalam Rondeel (2001) menyatakan bahwa dalam banyak kasus tidak ada perekahan mikro atau ekspulsi yang terjadi sebelum jumlah bitumen yang dihasilkan batuan sumber mencapai batas ambang tertentu.
Mills (1923) dan Sokolov (1964) dalam Koesoemadinata (1980) sehubungan dengan pelarutan minyakbumi dalam gas dan ekspansi gas, menyatakan bahwa minyak dapat larut dalam gas,  terutama pada temperatur dan tekanan tinggi. Gas diketahui dapat bermigrasi dengan lebih leluasa melalui batuan bergubung tegangan permukaannya yang kecil. Karena suatu pembebasan tekanan, maka gas berekspansi dan membawa minyakbumi terlarut. Rondeel (2001) menyatakan bahwa mekanisme pelarutan ini hanya terjadi bergantung pada keberadaan gas yang dipengaruhi oleh tingkat katagenesis dan kapabilitas batuan sumber untuk menghasilkan gas.
Jarak dari migrasi primer hidrokarbon pendek. Migrasi primer terjadi dengan lambat dan sulit, dikarenakan batuan sumber yang memiliki permeabelitas yang rendah. Migrasi primer akan terhenti ketika hidrokarbon mencapai tingkat permeabelitas yang memungkinkan terjadinya migrasi sekunder. Migrasi primer dapat terjadi baik secara lateral, ke atas dan ke bawah bergantung pada karakteristik carrier bed yang ada di dekat batuan sumber.
Migrasi Sekunder
Ketika hidrokarbon berhasil keluar dari batuan sumber dan mengalami migrasi sekunder, pergerakan dari hidrokarbon akan dipengaruhi oleh gaya pelampungan (bouyancy). Teori pelampungan (dalam Koesoemadinata, 1980) menerangkan mekanisme pergerakan minyak bumi karena adanya perbedaan berat jenis minyakbumi dan air. Suatu gumpalan minyak dalam air akan selalu melambung mencari tempat yang lebih tinggi. Gumpalan ini kemudian bergerak ke atas mengikuti kemiringan penyekat batuan reservoir.
Berlawanan dari gaya pelampungan adalah tekanan kapilaritas (Rondeel, 2001). Semakin besar pori dari suatu batuan, semakin kecil tekanan kapilaritasnya, dan semakin kecil pori dari suatu batuan, semakin besar tekanan kapilaritasnya.  Gaya pelampungan bekerja untuk mengerakan hidrokarbon, tetapi tekanan kapilaritas melawan gaya pelampungan tersebut. Sehingga apabila gaya pelampungan yang bekerja lebih kecil dari pada tekanan kapilaritas, maka migrasi dari hidrokarbon tidak akan terjadi. Aliran hidrodinamik yang merupakan gaya ketiga yang mengerakan hidrokarbon dapat mengubah pergerakan dari hidrokarbon, tetapi hal ini kurang memperngaruhi dasar bahwa gaya pelampungan dan tekanan kapilaritas merupakan faktor utama yang menentukan pergerakan dari hidrokarbon.
Migrasi sekunder  terjadi pada arah yang dipengaruhi oleh gaya pelampungan yang paling besar. Pergerakan ini awalnya menuju ke arah atas, dan lalu mengikuti kemiringan ­­carrier bed­ apabila hidrokarbon menemui lapisan dengan permeabelitas kurang di atas ­carrier bed. Keberadaan struktur dan perubahan fasies mungkin menyebabkan tekanan kapilaritas lebih dominan daripada gaya pelampungan, sehingga arah migrasi mungkin akan berubah, dan atau terhenti.
Akumulasi
Apbila hidrokarbon mencapai trap maka terjadi pemisahan antara fasa hidrokarbon dengan air. Akumulasi terjadi sebagai akibat gaya pelampungan yang menggerakan hidrokarbon berhenti atau dibiaskan. Batuan inpermeabel dapat menjadi perisai yang menahan migrasi hidrokarbon terjadi, karena tekanan kapilaritas yang tinggi terhadap gaya pelampungan hidrokarbon.
Trap (Perangkap) Klasik
Perangkap hidrokarbon dibagi menjadi dua, yaitu perangkap struktur dan perangkap stratigrafi. Dengan seal yang mencegah migrasi vertikal hidrokarbon dari batuan reservoir ke strata yang berada di atasnya dan litologi atau struktur tertentu yang mencegah migrasi secara mendatar/lateral.
Perangkap kinetik
Prinsip sederhana dari perangkap kinetik adalah bahwa suplai hidrokarbon ke dalam perangkap lebih cepat daripada kebocoran hidrokarbon. Berbagai kasus yang ada menunjukan  bahwa dalam perangkap kinetik, permeabelitas dan litologi juga turut mengontrol kecepatan suplai hidrokarbon dan kebocorannya.
Perangkap Tar-Mat
Perangkap ini terbentuk  karena biogradasi. Dalam kasus dimana tidak ada mekanisme perangkap struktur ataupun stratigrafi, tar-mat menjadi satu-satunya perangkap yang mungkin. Perangkap tar-mat sangat jarang, dan hidrokarbon yang terperangkap pada perangkap jenis ini memiliki produktivitas rendah, tetapi cukup penting karena beberapa akumulasi hidrokarbon tebersar terperangkap pada pernagkap tar-mat.
Gas hydrates
Formasi dari gas alam hidrat kristalin merupakan mekanisme pemerangkapan yang sangat efisien untuk gas alam, terutama metana. Hidrat gas alam terbentuk dan stabil di bawah tekanan dan temperatur pada kedalaman beberapa ratus meter di bawah lantai samudera dan pada zona permafrost.
Efek pada komposisi minyak dan gas
Perubahan dari komposisi antara bitumen dan minyak mentah dapat terjadi selama ekspulsi (migrasi primer) dari batuan sumber. Kandungan NSO berinteraksi dengan molekul-molekul air dan mineral. Ketika ekspulsi  telah terajadi, dapat berlangsung efek kromatografi selama migrasi sekunder.  Tekanan dan temperatur yang juga mempengaruhi keadaan fasa hidrokarbon, dan juga pemisahannya juga membuat komposisi dari hidrokarbon berubah secara drastis.
Eksplorasi
Aspek penting dari migrasi primer adalah jenis dari hidrokarbon yang keluar (minyak atau gas), kemudian efisiensi dari ekspulsi, dan waktu dari ekspulsi itu sendiri. Konsep migrasi hidrokarbon sepatutnya menjadi perhatian utama bagi tiap ahli eksplorasi, terutama untuk mempelajari lebih lanjut kapan hidrokarbon bermigrasi, kearah mana migrasinya, dan seberapa banyak yang bermigrasi..
Daftar Pustaka
Koesoemadinata, R. P., 1980, Geologi Minyak-Gasbumi, Penerbit ITB, Bandung.
Rondeel, H. E., 2001, Hydrocarbons.

Kerangka Tektonik Regional Kalimantan



Kerangka Tektonik Regional
Pulau Kalimantan merupakan pulau terbesar yang menjadi bagian dari Lempeng mikro Sunda. Menurut Tapponnir (1982) Lempeng Asia Tenggara ditafsirkan sebagai fragmen dari lempeng Eurasia yang melejit ke Tenggara sebagai akibat dari tumbukan kerak Benua India dengan kerak Benua Asia, yang terjadi kira-kira 40 – 50 juta tahun yang lalu (Gambar 3.2). Fragmen dari lempeng Eurasia ini kemudian dikenal sebagai lempeng mikro Sunda yang meliputi Semenanjung Malaya, Sumatra, Jawa, Kalimantan Selatan dan Kalimantan Tengah. Adapun batas-batas tektonik yang paling penting disebalah timur adalah :
1.    Komplek subduksi Kapur Tersier Awal yang berarah Timurlaut, dimulai dari Pulau Jawa dan membentuk pegunungan Meratus sekarang,
2.    Sesar mendatar utama di Kalimantan Timur dan Utara (Gambar 3.3),
3.    Jalur subduksi di Kalimantan Utara, Serawak, dan Laut Natuna, Jalur ini dikenal dengan jalur Lupar.


                      Gambar 3.2. Tektonik pembentukan Pulau Kaliman-
                                           tan, bagian dari lempeng mikro Sunda
                                           (Satyana, 1994).

Secara regional wilayah kuasa pertambangan PT. Pertamina EP UBEP Tanjung termasuk ke dalam Cekungan Barito (Kusuma dan Darin1985), lihat (Gambar 3.3). Cekungan Barito ini meliputi daerah di Kalimantan Tenggara, cekungan ini terletak diantara dua elemen yang berumur Mesozoikum (Paparan Sunda di sebelah barat dan Pegunungan Meratus yang merupakan jalur melange tektonik di sebelah timur).
Orogenesa yang terjadi pada Plio-Plistosen mengakibatkan bongkah Meratus bergerak ke arah barat. Akibat dari pergerakan ini sedimen-sedimen dalam Cekungan Barito tertekan sehingga terbentuk struktur perlipatan.
Cekungan Barito memperlihatkan bentuk cekungan asimetrik yang disebabkan oleh adanya gerak naik dan gerak arah barat dari Pegunungan Meratus. Sedimen- sedimen Neogen diketemukan paling tebal sepanjang bagian timur Cekungan Barito, yang kemudian menipis ke barat. Secara keseluruhan sistem sedimentasi yang berlangsung pada cekungan ini melalui daur genang laut dan susut laut yang tunggal, dengan hanya ada beberapa subsiklus yang sifatnya lokal dan kecil. Formasi Tanjung yang berumur Eosen menutupi batuan dasar yang relatif landai, sedimen-sedimennya memperlihatkan ciri endapan genang laut yang diendapkan pada lingkungan deltaik air tawar sampai payau. Formasi ini terdiri dari batuan-batuan sedimen klastik berbutir kasar yang berselang-seling dengan serpih dan kadangkala batubara. Pengaruh genang laut marine bertambah selama Oligosen sampai Miosen Awal yang mengakibatkan terbentuknya endapan-endapan batugamping dan napal (Formasi Berai). Pada Miosen Tengah-Miosen Akhir terjadi susut laut yang mengendapkan Formasi Warukin. Pada Miosen Akhir ini terjadi pengangkatan yang membentuk Tinggian Meratus, sehingga terpisahnya cekungan Barito, Sub Cekungan Pasir dan Sub Cekungan Asam-Asam (Gambar 3.4).

                        Gambar 3.3.Elemen Tektonik Kalimantan(Kusuma & Darin, 1989).



                   Gambar 3.4. Barito Basin-Makassar Strait cross section (After Satyana and Silitonga, 1994)

Fisiografi Kalimantan


Menurut Bemmelen (1949) pulau Kalimantan dibagi menjadi beberapa zona fisiografi, yaitu :
1.    Blok Schwaner yang dianggap sebagai bagian dari dataran Sunda,
2.    Blok Paternoster, meliputi pelataran Paternoster sekarang yang terletak dilepas Pantai Kalimantan Tenggara dan sebagian di dataran Kalimantan yang dikenal sebagai sub cekungan Pasir,
3.    Meratus Graben, terletak diantara blok Schwaner dan Paternoster, daerah ini sebagi bagian dari cekungan Kutai,
4.    Tinggian Kuching, merupakan sumber untuk pengendapan ke arah Barat laut dan Tenggara cekungan Kalimantan selama Neogen. Cekungan-cekungan tersebut antara lain:
a.    Cekungan Tarakan, yang terletak paling Utara dari Kalimantan Timur. Disebelah Utara cekungan ini dibatasi oleh “Semporna High”,
b.    Cekungan Kutai, yang terletak sebelah Selatan dari Tinggian Kuching yang merupakan tempat penampungan pengendapan dari Tinggian  Kuching selama Tersier. Cekungan ini dipisahkan oleh suatu unsur Tektoniok yang dikenal sebagai Paternoster Cross Hight dari cekungan Barito.
Secara fisiografis, daerah kerja praktek PT. Pertamina EP UBEP Tanjung, termasuk ke dalam Cekungan Barito bagian timur, yang dibatasi oleh Pegunungan Schwaner pada bagian bagian barat, Pegunungan Meratus pada bagian timur dan Cekungan Kutai pada bagian utara (Gambar 3.1). Cekungan Barito meliputi daerah seluas 70000 kilometer persegi di Kalimantan Selatan bagian tenggara dan terletak di sepanjang batas tenggara Lempeng Mikro Sunda. Cekungan Barito merupakan cekungan bertipe foreland yang berumur Tersier, berhadapan langsung dengan Pegunungan Meratus (Satyana dan Silitonga, 1994).
Di bagian utara, Cekungan Barito dipisahkan dengan Cekungan Kutai oleh Sesar Adang. Sedangkan di bagian timur dipisahkan dengan Cekungan Asem-asem oleh Tinggian Meratus yang memanjang dari arah Baratdaya samapi Timurlaut. Di bagian selatan merupakan batas tidak tegas dengan Cekungan Jawa Timur Utara dan di bagian barat berbatasan dengan Komplek Schwaner yang merupakan basement.
Suatu penampang melintang melalui Cekungan Barito memperlihatkan bentuk cekungannya yang asimetrik. Hal ini disebabkan oleh adanya gerak naik ke arah barat dari Pegunungan Meratus. Sedimen-sedimen Neogen ditemukan paling tebal sepanjang bagian timur Cekungan Barito, yang kemudian menipis ke arah barat.

Formasi Tanjung merupakan batuan sedimen Tersier tertua yang terdapat di Cekungan Barito bagian timur. Cekungan Barito di daerah ini dialasi oleh batuan sedimen Kelompok Pitap, batuan vul­kanik Kelompok Haruyan, Formasi Batununggal dan Paniungan, Granit Belawaian, dan batuan ul­trabasa (Heryanto dan Hartono, 2003). Cekungan ini, sebagai salah satu cekungan tempat beraku­mulasinya sumber daya energi, memiliki endapan batubara dengan sebaran yang sangat luas.